Measurement of self-generated spontaneous fields and their effects on ICF ion kinetic dynamics

National Ignition Facility

LaB Conference, July 22-28, 2017 Moscow - St Petersburg, Russia

Measurement of self-generated spontaneous fields and their effects on ICF ion kinetic dynamics

National Ignition Facility

LaB Conference, July 22-28, 2017 Moscow - St Petersburg, Russia Collaborators

C. K. LI¹, F. H. Séguin¹, J. A. Frenje¹ R. D. Petrasso¹, P.-E. Masson-Labprde², S. Laffite², V. Tassin², P. A. Amendt³, H. G. Rinderknecht³ S. C. Wilks³, N. M. Hoffman⁴, A. B. Zylstra⁴, S.Atzeni⁵, R. Betti⁶, M. Rosenberg⁶ and T. C. Sangster⁶

- ¹ Massachusetts Institute of Technology
- ² CEA
- ³ Lawrence Livermore National Laboratory
- ⁴ Los Alamos National Laboratory
- ⁵ University of Rome
- ⁶ University of Rochester

Two approaches to ICF implosions

ICF implosions result in two phases of nuclear burn: shock burn and compression burn

Hydro assumptions can break down during the shock-convergence phase

Mainline ICF simulations are made with average-ion hydrodynamic approximation

Single-fluid model

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{v}) = 0$$

$$\rho \left(\frac{\partial v}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = \nabla \mathbf{J} \times \mathbf{B} \cdot \nabla P + \frac{\rho}{m} \mathbf{F}$$

$$\frac{m}{ne^2} \frac{\partial \mathbf{J}}{\partial t} = \mathbf{E} + \mathbf{v} \times \mathbf{B} \cdot \frac{1}{en} \mathbf{J} \times \mathbf{B} + \frac{1}{en} \nabla P_e - \eta \mathbf{J}$$

Averaged quantities over all species

$$\rho = \Sigma n_i m_i + n_e m_e$$

$$P = P_i + P_e$$

$$\mathbf{v} = \frac{1}{\rho} (n_i m_i \mathbf{v}_i + nem_e \mathbf{v}_e)$$

$$\mathbf{J} = en(\mathbf{v}_i - \mathbf{v}_e)$$

Strong gradients in pressure, electric potential or temperature can cause species separation

P. Amendt, et al. PRL 109, 075002 (2012)

Interfaces are present in hohlraum and capsule of a typical indirect-drive ICF target

Interfaces are hydrodynamically unstable during laser-plasma interactions and ICF implosions, and are affected by fields

Time-gated, monoenergetic proton radiography offers unique measurements of self-generated E+B fields, providing insight into ion kinetic dynamics

Imploded capsules:

- Expansion of corona plasma \rightarrow current filaments \rightarrow B fields
- Converging shock front \rightarrow radial E fields

–

Laser-driven hohlraums

.

- Charge sheath formed by Ponderomotive force \rightarrow E fields
- ∇P at hohlraum wall $\rightarrow E$ fields
- Diffusive mix at interfaces \rightarrow ambipolar E fields
- $\nabla n \times \nabla T$ around laser spots \rightarrow B fields
- Hydro unstable interfaces \rightarrow RT induced B fields

Coupled with ion-kinetic processes, self-generated fields have important effects on aspects of ICF kinetic dynamics

E & B were separated and mapped by imaging two plasma bubbles, identical except for the sign of B

Proton fluence focusing and its reversal indicate the direction change of self-generated radial E fields associated with moving shock front

P. A. Amendt et al PRL (2010)

Proton radiography indicates the generation of B fields by Rayleigh-Taylor instabilities

Time resolved proton radiographs of indirect-drive ICF implosions at OMEGA illustrate fields and flows in hohlraums

Fields are generally not included in hydro simulations

C. K. Li et al., Science (2010)

Recent simulations reproduce OMEGA experiments, indicating kinetic effects at Au/gas interfaces

Interpenetration occurs due to the classical Rayleigh-Taylor instability as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blow-off

0.8 ns

1.6 ns

The consequence is a reduced benefit of the gas fill because the enhanced interpenetration (or mixing) between the Au blow-off and the gas plasma leads to high-Z material stagnating earlier in the hohlraum interior

Peak values are E ~ 10⁹ V m⁻¹ and B ~ 10⁶ gauss in different ICF implosion scenario

- ICF capsule implosions
- Laser-irradiated hohlraums
- Quantitative measurements of the effects of such fields on ICF implosions are difficult ongoing undertaking