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Two approaches to ICF implosions
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ICF implosions result in two phases of nuclear burn: 

shock  burn and compression burn
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Hydro assumptions can break down 

during the shock-convergence phase
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Mainline ICF simulations are made with

average-ion hydrodynamic approximation 
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Strong gradients in pressure, electric potential or 

temperature can cause species separation 
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𝛼 =  𝜌𝐷 𝜌𝑡𝑜𝑡 ~𝑓𝐷

Rebound Shock:
𝛁𝑷

𝛁𝝓

iD Gradients cause 
differential mass fluxi3He
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These effects will impact DT as well as D3He.



Interfaces are present in hohlraum and capsule 
of a typical indirect-drive ICF target

Laser beams
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Interfaces are hydrodynamically unstable during laser-plasma 

interactions and ICF implosions, and are affected by fields 

RT ? 

0.0 ns     0.8 ns        1.2 ns       1.4 ns       1.6 ns     1.9 ns        2.1ns

C. K. Li et al,  Phys. Rev. Letts. 100, 225001 (2008)
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Imploded capsules:

− Expansion of corona plasma  current filaments  B fields

− Converging shock front  radial E fields

− ………....

Laser-driven hohlraums

− Charge sheath formed by Ponderomotive force  E fields

− P at hohlraum wall  E fields

− Diffusive mix at interfaces  ambipolar E fields 

− nT around laser spots  B fields  

− Hydro unstable interfaces   RT induced B fields 

− …………..

Time-gated, monoenergetic proton radiography offers unique 

measurements of self-generated E+B fields, providing 

insight into ion kinetic dynamics

Coupled with ion-kinetic processes, self-generated fields 

have important effects on aspects of ICF kinetic dynamics
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Proton fluence focusing and its reversal indicate the

direction change of self-generated radial E fields 

associated with moving shock front
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• Modify the structure of 

shock front

• Enhance diffusion and 

species separation

• ………… 
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Proton radiography indicates the generation of B fields 

by Rayleigh-Taylor instabilities
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Time resolved proton radiographs of indirect-drive ICF 

implosions at OMEGA illustrate fields and flows in hohlraums
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Fields are generally not included in hydro simulations 
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Recent simulations reproduce OMEGA experiments, 

indicating kinetic effects at Au/gas interfaces

Simulation by

S. Wilks

1

Gas Wall

OMEGA 

experiments

• Modify the structure of interface 

• Enhance diffusion, species separation 
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Neopentane
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Interpenetration occurs due to the classical Rayleigh-Taylor 

instability as the lighter, decelerating ionized fill gas pushes 

against the heavier, expanding gold wall blow-off

The consequence is a reduced benefit of the gas fill because the enhanced 

interpenetration (or mixing) between the Au blow-off and the gas plasma 

leads to high-Z material stagnating earlier in the hohlraum interior
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Summary

Peak values are E ~ 109 V m-1 and B ~ 106 gauss in 

different ICF implosion scenario

• ICF capsule implosions

• Laser-irradiated hohlraums

• Quantitative measurements of the effects of 

such fields on ICF implosions are difficult 

ongoing undertaking

17


