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Context: laser-based proton acceleration via TNSA 
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Update of 
A. Macchi, M. Borghesi, & M. Passoni,  
Rev. Mod. Phys. 85, 751-793 (2013). 
M, Borghesi, M., et al., Plasma Phys. 
Contr. Fusion 50, 124040(2008).

> 100 MeV at > 1021 W.µm2.cm-2 ??
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Summary

At high intensity (>1020 W.cm-2), self-generated magnetostatic
fields  on  the  target rear surface may pose a fundamental 
limit to TNSA. 

The B-fields is strong  enough (approaching 100 kT or Giga-
Gauss at intensity > 1021 W/cm2) to  magnetize  the  sheath  
electrons  and  deflect  the  protons  off  the accelerating  
region,  hence  degrading  the  energy  transfer  from  the  
electrons  to  the protons.

For very short laser pulses (a few tens of fs) the magnetic 
inhibition effect may be less significant, due to short 
acceleration time and short plasma expansion, thus particles 
are less deflected. 
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Pioneering work

“Due to self-generated magnetic fields, annular structures protons with radii decreasing 
as the energy of the ions increases.”

A. Pukhov Phys. Rev. Lett. 86, 3562 (2001)

3D PIC simulations I = 1019 W.µm2.cm-2

τ = 150 fs
Bmax ~ 10 MG
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PIC simulation at high intensity, B-field map
2 µm thick Al target, 100 fs after the peak

(a1)

ILλL
2 = 6.5 x 1019 W.cm-2.µm2

(b1)

ILλL
2 = 2 x 1021 W.cm-2.µm2

PICLS code by Y. Sentoku

τL = 400 fs τL = 700 fs
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MeV electron trajectories  

ILλL
2 = 6.5 x 1019 W.cm-2.µm2 ILλL

2 = 2 x 1021 W.cm-2.µm2
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Proton trajectory (Ep = 22 MeV) 

ILλL
2 = 6.5 x 1019 W.cm-2.µm2 ILλL

2 = 2 x 1021 W.cm-2.µm2
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φ = 4.4 µm
φ = 0.9 µm
φ = 8 µm
φ = 1.6 µm

Experimental results of proton maximum energy

τL = 400 fs 

τL = 800 fs 

Target 0.5 – 2 µm thick, Al or Au

M. Nakatsutsumi et al., Under review1D collisionless expansion model: P. Mora, Phys. Rev. Lett. 90, 185002 (2003).
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Spatial distribution of accelerated protons shows energy-
dependent hollow ring pattern, as suggested by A. Pukhov paper
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Quantitative assessment of B-field growth and amplitude

����
� 2��⁄ ≈ ��,��������

Where Ex, the longitudinal field from self-similar expansion model.
Isothermal during the laser pulse.
�� the transverse gradient of the sheath field, typically ~ 40 µm

Temporal evolution of the B-field (time-dependent Faraday low)

An upper limit of B-field when the magnetic and plasma 
pressures become comparable

Ltotal = c*tchar

2r = φL + 2*Ltotaltanθ

θ = 45˚
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PIC
B. Albertazzi et al., Phys. 
Plasmas 22, 123108 (2015)

~ 400 fs

500 MG

��� ��⁄ = ��� ��⁄ − ��� ��⁄ ~��� ��⁄



12M. Nakatsutsumi, On magnetic inhibition of laser-driven, sheath-accelerated high-energy protons - LaB17, 23th July 2017

B-field vs. intensity, normalized Larmor radius for electrons 
and protons τL = 700 fs, at the laser intensity peak 

[A] G. Sarri et al., Phys. Rev. Lett. 109, 205002 (2012).
[B] B. Albertazzi et al., Phys. Plasmas 22, 123108 (2015).
[C] W. Schumaker et al., Phys. Rev. Lett. 110, 015003 (2013).
[D] M. Tatarakis et al., Nature 415, 280 (2002).
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Dependence on pulse duration 
At the laser intensity peak 
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[A] G. Sarri et al., Phys. Rev. Lett. 109, 205002 (2012).
[B] B. Albertazzi et al., Phys. Plasmas 22, 123108 (2015).
[C] W. Schumaker et al., Phys. Rev. Lett. 110, 015003 (2013).
[D] M. Tatarakis et al., Nature 415, 280 (2002).
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Summary

At high intensity (>1020 W.cm-2), self-generated magnetostatic
fields  on  the  target surface may pose a fundamental limit to 
TNSA. 

The B-fields is strong  enough (approaching 100 kT or Giga-
Gauss at intensity > 1021 W/cm2) to  magnetize  the  sheath  
electrons  and  deflect  the  protons  off  the accelerating  
region,  hence  degrading  the  energy  transfer  from  the  
electrons  to  the protons.

For very short laser pulses (a few tens of fs) the magnetic 
inhibition effect may be less significant, due to short 
acceleration time and short plasma expansion, thus particles 
are less deflected. 


