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Using LFEX laser system, we demonstrate for the first time that
high-contrast, multi-ps, relativistic-intensity laser pulses are
advantageous for proton acceleration.

A. Yogo et al., Sci. Rep. 7, 42451 (2017).

By extending the pulse duration from 1.5 to 6 ps, the maximum energy of protons is
improved more than twice (from 13 to 33 MeV) although the laser intensity in fixed
on 10'® Wem™. The proton energy observed are discussed using a plasma expansion
model newly developed by taking into account the enhancement of electron
temperature depending on the pulse duration, when the laser pulse accelerates
electrons beyond the ponderomotive energy.



High-Contrast, kJ, ps pulses are delivered on targets.
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lon acceleration with 1013-10%° Wcm™ laser intensity

TNSA model: ion acceleration from the target rear surface.

Fast ions
/

(D The laser pulse is
focused on a thin foil
(nm-pm).

@ Fast electrons (> 0.511 MeV) /
are generated. /
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Maximum ion energy predicted by 1 dimensional (1D) isothermal model

8:}?51.1‘ — ET!} {1[‘1 (-rp T 1.!' + 1 )‘
., ' P. Mora Phys. Rev. Lett. 90, 185002 (2003)
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@ To explain experimental results, adiabatic cooling and 3D
Lo effect are often introduced in the 1D isothermal model.



Experimental conditions

lon energy distributions are measured at the rear side of thin-foil targets.

LFEX: ps laser (a) Target Chamber
1.5 ps, 1 k) on target
1.2X101° Wem2
60 um spot (FWHM)
4 beams in total.

The arrival timing of 4 LFEX
beams can be set independently
of each other.
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(b) Present Setup
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LFEX with ions.
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lon ed Maximum Proton Energy 52 MeV with 1.2X10*° Wecm™
Energy Conversion Efficiency into Protons (>6 MeV): 4 %
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lon ene The main topic of this talk: targets.
ke Laser pulse “train” boosts proton acceleration
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Recent theoretical studies predict electron heating depending on time.
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%10_2_- - | A.J.Kemp and L. Divol PRL 109, 195005 (2012)
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Femtosecond pulse + thin foil target

S.V. Bulanov et al., Physics of Plasmas 22, 063108 (2015)

Electrons are stochastically heated during the
chaotic motion around the thin foil target.
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Femtosecond pulse + near-critical gas target
A.P.L. Robinson, A. V. Arefiev and D. Neely, PRL 22, 065002 (2013)

Super-ponderomotive electrons are generated
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due to non-wake field (= stochastic) mechanism.

We investigate time-dependent electron heating in

multi-ps range and its effect on ion acceleration.
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Proton energy increases with the pulse duration.

Our experimental results clearly exceed the prediction of TNSA model.

[Pulse duration]
15ps = 3ps = 6ps

1 pulse 2-pulse train  4-pulse train

Our proton energy is close to

The intensity is fixed on 2.3 x 1018 Wcm2 0 1012 Wem?2 line by TNSA.
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Electron temperature increases with pulse duration.

The temperature exceed a usual scaling low.

15ps =

3 ps
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Ponderomotive energy
Ty = mecz(y —1)

Wilks et al., PRL 96, 13831992

y = /1+a(2)/2

ao = 0.85yI[Wcm=2]A2[um] /1018

T, = 0.2 MeV
for] = 2.3 x 1018 Wcm?

However, in our experiment,

Never explained by
the ponderomotive
scaling
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The focal spot (60 um) leads to quasi-1D plasma expansion.
We try to explain the experimental results using 1D PIC simulation.

We have to evaluate the electron heating in the
region up to 10 ps for the 4-pulse train case.

2D PIC simulation in the multi-ps time scale is
time consuming, almost impossible.

We find that when the focal spot is set to be 60
um, the 2D PIC results are well in agreement
with the results obtained in 1D simulation, in
the case of 1.5 ps pulse duration.

We evaluate the electron heating in multi-ps
region by using 1D PIC simulation that probably
reproduces the condition of actual experiment.
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Proton energy spectra obtained with 2D PIC simulation
assuming a 60 um focal spot (blue) and 1D PIC (red). The
laser pulse has 1.5 ps duration and 1X10°Wcm™2 intensity.
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Comparison btw experiment and simulation

Note ESM used here has no time resolution, we show the PIC results integrated over all the time domain.

ESM (Experiment)

| T,=0.45+0.02 MeV

PIC results (Courtesy of Dr. Iwata)
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1D PIC results quantitatively agree with the experiments




Time evolution of the electron temperature by 1D PIC
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The electron temperature for 3 ps (2 pulse train) is
clearly exceeding the conventional scaling low (0.2 MeV).
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Mechanism underlying the electron heating

PIC simulation shows that electrons are heated during recirculating the target.
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FIG. 4. PIC results for the 2 pulse case. (a) Trajectory of the same selected electron shown in Fig. 3(f). The thin dashed-dotted lines at x =74 um and 80 um
represent the initial positions of front and rear surfaces. (b) Energy of the same electron in (a). Trajectory in (a) and energy in (b) for time r =2.2 ps—2.6 ps are
closed up in (c) and (d), respectively. (e) Phase plot of the same electron in (a) for time t=3.1 ps—3.3 ps.
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We introduce the time-dependent temperature into 1D plasma
expansion model, based on self-similar solutions.

n.
ne = neg exp (ed/T(t)), We newly introduce <Z>ni0M
Egﬂgr;f} — e(ne — Zny). time dep-enc'zlency (?nto r:I
i , the self-similar variable e0
{)t'.f'i'.j_.; + C}I(ﬂ-i'i-’-ﬂ = 0. ;
£

e . = . R(t)= [ co(tat
Orvi + 0,020 = —ZeDgpd/my, $ R(t) (?) /0 (.\( )¢

y L N\

cp = —T(t)(+1) lon acoustic velocity

Self-similar solution

of the electric field Ess = =00 = T(t)/'f?"j?(t)' depending on time

ic fi i 2T (1
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1D plasma expansion model for time-dependent temperature
Evaluating time dependency of temperature

Casel. T(r) =T, = const.

Mora’s isothermal model
__ dR

;=1 ——=1 R=1 = p=2C,In(r+1+12)

P. Mora Phys. Rev. Lett. 90, 185002 (2003)

Case 2 (our case) T(7) depends on time.

We derive the time dependency from the 1D PIC results, by
assuming the following formula on 'normalized acoustic velocity’.

r I'(z 1.2} FjIC;re;Li‘Jl:: """"""
CSZ — ,1(1 ) — [1+a—a(1—T/TO)2]2 [ v 2pulses
0

" & 4 pulses
a: degree of heating,a = 0 —» T(7)=T,
To: characteristic time that cooling starts.

Slope Temperature [MeV]

We determine « and 7 by fitting the PIC results.

ol o N

" 1 " I "
0 1 2 3 4 5 6 7 8
Time [ps]
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Maximum proton is analytically reproduced.
We find a fairly well agreement with the experiments.
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Energy conversion efficiency into protons
5% efficiency is achieved with 1018 Wcm intensity.
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@ Conclusion

ILE OSAKA

The high-contrast kilo-Joule picosecond laser allows to generate 1D
(planner) expanding plasma experimentally.

We have clarified “time-dependent electron heating” that
accelerates electrons beyond the ponderomotive energy depending
on time.

We have found an optimum pulse duration for proton acceleration
around 3-6 ps for 2.3X10'® Wcm~2 intensity, when the Max energy
and the Conv. Eff. increase up to 30 MeV and 5%, respectively.

The experimental results on the electron temperature and proton
energy are quantitatively in agreement with our 1D analytical model.
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