Investigating guide field reconnection in HED plasmas

S. Bolaños^{1,3}, R. Smets³, R. Riquier⁴, A. Severin¹, V. Nastasia⁵, M. Safranova², A. Grisollet⁴, E. Filippov⁶, S. Pikuz⁶, J. Fuchs^{1,2}

 LULI - CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités - F-91128 Palaiseau cedex, France
Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
LPP, University P. & M. Curie, CNRS, Ecole Polytechnique, F-91128 Palaiseau, France
CEA, DIF, Bruyères-le-Chatel, France
ELI-NP, Bucarest, Romania
JIHT-RAS, Moscow, Russia

Principle of magnetic reconnection

- Breaking B lines and reconnecting them
- Ejecting from the reconnection area

3D effects are there, e.g. solar prominence merging

[Aulanier et al. ApJ 2005]

SDO/AIA, 171 Å filter, 24 February 2011. Credit: NASA/LMSAL/SDO

How to generate strong B-field loops with high-power lasers

$$\frac{\partial B}{\partial t} \sim \frac{\nabla T_e \times \nabla N_e}{N_e} + .$$

Magnetic field generated by **Biermann-Battery effect, compressed against** the target due to the Nernst effect

L. Lancia et al., PRL (2014)

Close-by lasers allow to investigate reconnection

Nilson et al., PRL (2006) Li et al., PRL (2006/2007)

Simulations highlight the various stages of MR

Simulations highlight the various stages of MR

Initialisation with the experimental parameters

Deflection of the protons (Radiography map)

This compression area provides information on the dynamics of MR

Setup of the experiment

Main diagnostics :

- <u>Proton-</u> radiography
- Particle spectrometer
- X/UV spectrometer
- SOP (self-optical pyrometry)

Tilting the targets allows to investigate the effect of the guide-field

Dark surface are the results of the deposited energy from the protons in Radiochromic films (RCF)

Dark line comes from accumulation of deflected protons by the B field

Introducing a guide field slows down the reconnection

MR is triggered at this time according to the compression of the deflected protons

Introducing a guide field slows down the reconnection

ducing a guide field slows down the nnection

SOP data with 1 or 2 laser spots (w/o guide-field)

Conclusion

- Experiment shows that it takes more time to trigger MR than predicted
- In present simulations, we do not observe drastic effect of the initial angle \rightarrow under investigation
- Other diagnostics are being unfolded
- In Dec 2017, we will conduct shots at LMJ/Petal to investigate MR in a lower β regime

