

Generation of sub-MG quasi-stationary magnetic field using cm scale capacitor-coil targets

Deepak Kumar

deepak.kumar@eli-beams.eu

Team

ELI Beamlines, Czech Republic	Queen's University, Belfast	IPPLM, Poland	Institute of Plasma Physics, Czech Republic
 Sushil Singh Lorenzo Giuffrida Piotr Lutoslawski Massimo de Marco Deepak Kumar 	 Hamad Ahmed P. Hadjisolomu Thomas Hodge Marco Borghesi Satya Kar 	 Tomas Chodukowski Zofia Kalinowska Tadeusz Pisarczyk 	 Roman Dudzak Libor Juha Eduard Krousky Miroslav Kruz Mirek Pfeifer Jiri Skala Jiri Ullschmeid Jan Dostal

Special thanks: V. Tikhonchuk

Magnetic fields for laser plasma experiments

- Streaming hot electrons from the cathode (back) charge the anode (front)
- Induced voltage difference drives a current through the coil
- Current decays after bulk plasma reaches the anode and short circuits

Capacitor coil targets (decoupling time scales)

- Laser pulse duration: $\tau_L \sim 1~\text{ns}$
- Plasma transition time between electrodes: $d/c_{s} \sim 1 \mbox{ ns}$
- External circuit resonant time: $2\pi\sqrt{LC} \sim 0.05$ ns
- Goals of the experiment
 - Avoid short circuiting of the plates to investigate behavior of circuit parameters
 - ≻2-color polarimetry (spatial and temporal evolution)
 - Increase access to the coil (1 mm diameter, ~ 3 cm from focus) to provide insitu measurements of magnetic field

Experimental layout

B field calculation from polarimetry

Target #1: Single foil with coil

Target #2: Parallel plate capacitor target

Target #4: Capacitor target with a hole

• Saturated signal corresponds to > 60 T field at 1ns delay

• Lumped circuit analysis

Previous experiments: $\tau_{res} = 0.05 \text{ ns} \leftrightarrow L_{res} = 1.5 \text{ cm} \leftrightarrow 3 \times target size$ PALS experiment: $\tau_{res} = 0.4 - 0.8 \text{ ns} \leftrightarrow L_{res} = 12 - 24 \text{ cm} \leftrightarrow 3 - 8 \times target size$

- Total charge
 - Electron spectrometer measures 50 x smaller charge. Low energy electrons responsible for most of target current
- Energy balance

 $\gg \int_{vol} B^2/2\mu_0 \sim 0.1 - 0.2\%$, however $\int Q^2/2C \sim 50\%$

≻How do we account for dissipation?

➤Coil resistance can increase 10 fold (still not enough)

>Under estimating target capacitance by a factor of ~ 100

• Implications of higher capacitance

Lumped circuit model valid

Macroscopic targets should be used for such targets

- At PALS, we were able to generate ~ 20 T fields with 1 mm diameter coils with just a grounded foil.
- Increasing the target capacitance tends to increase the field strengths. We measured \sim 30 T.

>Note: this is without collecting the hot electrons from the plasma.

- Increasing the distance of the focus from the coil does not seem to have any adverse effects.
- For targets with the hole in front plate, \sim 100 T fields seem likely at PALS.
- Macroscopic targets can provide similar performance while still shielding the coil from the plasma

In-situ magnetic field measurement by fused silica

- Fused silica crystals (500 um x 500 um, 100/300 um thick) placed within the coil
- The crystals introduced a polarization change (~ 2°), and thus were not usable.

