

Beam self-focusing and electron transport effects in magnetised laser-plasmas

M.P. READ, J.P. BRODRICK, C.P. RIDGERS

YORK PLASMA INSTITUTE, UNIVERSITY OF YORK

R.J. KINGHAM BLACKETT LABORATORY, IMPERIAL COLLEGE LONDON

Talk Outline

- Motivation: B-fields in HED plasmas
- Magnetised e⁻ transport physics
- Results from CTC and IMPACT simulations

Motivation: B-field applied to DD-ICF

Motivation: B-field applied to DD-ICF

 \cdot 30% increase in neutron yield with 8 kT field 1

¹ Chang *et al.*, Phys. Rev. Lett. **107** (2011)

Motivation: B-field applied to DD-ICF

• 30% increase in neutron yield with 8 kT field 1

• Flux-limited Nernst advection required to match simulations to experiment²

¹ Chang *et al.*, Phys. Rev. Lett. **107** (2011)

² Davies et al., Phys. Plas. **22** (2015)

• Improved laser-plasma coupling in hohlraum targets with applied 7.5 T B-field ³

³ Montgomery *et al.*, Phys. of Plasmas **22** (2015)

• Improved laser-plasma coupling in hohlraum targets with applied 7.5 T B-field ³

• Potential for B-field aided ignition of targets 4

³ Montgomery *et al.*, Phys. of Plasmas **22** (2015)

⁴ Perkins *et al.*, Phys. of Plasmas **20** (2013)

• Improved laser-plasma coupling in hohlraum targets with applied 7.5 T B-field ³

- Potential for B-field aided ignition of targets⁴
- But Nernst advection can reduce hohlraum T_e ⁵
- ³ Montgomery *et al.*, Phys. of Plasmas **22** (2015)
- ⁴ Perkins *et al.*, Phys. of Plasmas **20** (2013)
- ⁵ Farmer et al., Phys. of Plasmas **24** (2017)

Will magnetised transport affect laser focusing?

Will magnetised transport affect laser focusing? THERMAL PRESSURE DENSITY B-Field Heat-Flow Interstriand Dynamics NERNST ADVECTION HEAT-FLOW INHIBITION

Will magnetised transport affect laser focusing? B-Field NERNST ADVECTION Heat-Flow International Dynamics HEAT-FLOW WERMAL PRESSURE DENSITY INHIBITION **BINTING** REFRACTION **REFRACTION** PONDEROMOTIVE FORCE Laser Propagation

Martin Read | 5th LaB Workshop | Russia | 22nd – 28th July 2017

4 / 15

• Heat-flow

$$
\mathbf{q} = -\frac{n_e \tau_B T_e}{m_e} \underline{\kappa}^c \cdot \nabla T_e - \underline{\beta}^c \cdot \mathbf{j} \frac{T_e}{e}
$$

• Heat-flow

$$
\mathbf{q} = -\frac{n_e \tau_B T_e}{m_e} \underline{\kappa}^c \cdot \nabla T_e - \underline{\beta}^c \cdot \mathbf{j} \frac{T_e}{e}
$$

• Ohm's law

$$
en_e\left(\mathbf{E}+\mathbf{C}\times\mathbf{B}\right)=-\nabla P_e+\mathbf{j}\times\mathbf{B}+\frac{m_e}{e\tau}\underline{\alpha}^c\cdot\mathbf{j}-n_e\underline{\beta}^c\cdot\nabla T_e
$$

⁶ Epperlein & Haines, J. Phys. D **17** (1984)

⁷ Braginskii*.*, Rev. Plas. Phys. **1** (1965)

5 / 15

• Heat-flow

$$
\mathbf{q} = -\frac{n_e \tau_B T_e}{m_e} \underline{\kappa}^c \cdot \nabla T_e - \underline{\beta}^c \cdot \mathbf{j} \frac{T_e}{e}
$$

• Ohm's law

$$
en_e\left(\mathbf{E} + \boxed{\mathbf{C} \times \mathbf{B}}\right) = -\nabla P_e + \mathbf{j} \times \mathbf{B} + \frac{m_e}{e\tau} \underline{\alpha}^c \cdot \mathbf{j} - \left[n_e \underline{\beta}^c \cdot \nabla T_e \right]
$$

frozen-in flow Nernst advection

⁶ Epperlein & Haines, J. Phys. D **17** (1984)

⁷ Braginskii*.*, Rev. Plas. Phys. **1** (1965)

5 / 15

• Heat-flow

$$
\mathbf{q} = -\frac{n_e \tau_B T_e}{m_e} \underline{\kappa}^c \cdot \nabla T_e - \underline{\beta}^c \cdot \mathbf{j} \frac{T_e}{e}
$$

• Ohm's law

$$
en_e\left(\mathbf{E} + \boxed{\mathbf{C} \times \mathbf{B}}\right) = -\nabla P_e + \mathbf{j} \times \mathbf{B} + \frac{m_e}{e\tau} \underline{\alpha}^c \cdot \mathbf{j} - \left[n_e \underline{\beta}^c \cdot \nabla T_e \right]
$$

frozen-in flow Nernst advection

• Nernst advection - B-fields advect with heat-flow

$$
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left(\frac{\beta_{\wedge}}{e|B|} \nabla T_e \times \mathbf{B} \right) = \nabla \times (\mathbf{v}_{\mathbf{x}} \times \mathbf{B})
$$

⁶ Epperlein & Haines, J. Phys. D **17** (1984)

⁷ Braginskii*.*, Rev. Plas. Phys. **1** (1965)

5 / 15

• Non-local transport is inhibited using an applied B-field 8 ...

⁸ Froula *et al.*, Phys. Rev. Lett. **98** (2007)

6 / 15

• Non-local transport is inhibited using an applied B-field 8 ...

$B = 0 T$ $- - - B = 4 T (Frozen-in flow)$

6 / 15

• Non-local transport is inhibited using an applied B-field ⁸ ... but can re-emerge due to Nernst ⁹

⁸ Froula *et al.*, Phys. Rev. Lett. **98** (2007)

6 / 15

- **CTC** 2D MHD code w/ Braginksii transport ¹⁰
- **IMPACT** 2D VFP code inc. magnetic fields ¹¹

¹⁰ Bissell *et al.*, Phys. of Plasmas. **19** (2012)

¹¹ Kingham & Bell, J. Comp. Phys. **194** (2004)

7 / 15

- **CTC** 2D MHD code w/ Braginksii transport ¹⁰
- **IMPACT** 2D VFP code inc. magnetic fields ¹¹
- Both codes augmented with paraxial laser routine

¹⁰ Bissell *et al.*, Phys. of Plasmas. **19** (2012)

¹¹ Kingham & Bell, J. Comp. Phys. **194** (2004)

7 / 15

- **CTC** 2D MHD code w/ Braginksii transport ¹⁰
- **IMPACT** 2D VFP code inc. magnetic fields ¹¹
- Both codes augmented with paraxial laser routine

- ¹⁰ Bissell *et al.*, Phys. of Plasmas. **19** (2012)
- ¹¹ Kingham & Bell, J. Comp. Phys. **194** (2004)

7 / 15

- **CTC** 2D MHD code w/ Braginksii transport ¹⁰
- **IMPACT** 2D VFP code inc. magnetic fields ¹¹
- Both codes augmented with paraxial laser routine

¹⁰ Bissell *et al.*, Phys. of Plasmas. **19** (2012)

¹¹ Kingham & Bell, J. Comp. Phys. **194** (2004)

7 / 15

• Change to beam focusing with / without Nernst after 350 ps of simulation

• Change to beam focusing with / without Nernst after 350 ps of simulation

Martin Read | 5th LaB Workshop | Russia | 22nd – 28th July 2017

• Lineouts 1 mm into domain at t = 350 ps

9 / 15

• Lineouts 1 mm into domain at t = 350 ps

B-field (normalised)

Martin Read | 5th LaB Workshop | Russia | 22nd – 28th July 2017

9 / 15

• Lineouts 1 mm into domain at t = 350 ps

9 / 15

• Lineouts 1 mm into domain at t = 350 ps

9 / 15

Channel disruption in CTC is consistent

10 / 15

VFP simulations - no beam disruption

VFP simulations - no beam disruption

Intensity (10¹⁴ Wcm⁻²) at $t = 350$ ps

11 / 15

VFP simulations - no beam disruption

- Non-local transport:
	- Pre-heating
	- No flux-limiters were used initially in CTC

- Non-local transport:
	- Pre-heating
	- No flux-limiters were used initially in CTC
- IB absorption preferentially heats slower e⁻

$$
\int_0^1 f_0 \propto \exp\left[-\left(\frac{v}{v_T}\right)^m\right] \qquad 2 \le m \le 5
$$

- Non-local transport:
	- Pre-heating
	- No flux-limiters were used initially in CTC
- IB absorption preferentially heats slower e⁻

$$
f_0 \propto \exp\left[-\left(\frac{v}{v_T}\right)^m\right]
$$
 $2 \le m \le 5$

• Super-Gaussian transport can reduce Nernst advection by 5x under similar conditions ¹²

¹² Bissell *et al.*, New J. Phys. **15** (2013)

12 / 15

13 / 15

13 / 15

Choice of F_Q and F_N is important

Choice of F_0 and F_N is important

- CTC can use thermal (F_q) and Nernst (F_N) limiters
	- Cannot reproduce kinetic results so far
	- Use of thermal limiter alone makes results far worse!

Choice of F_0 and F_N is important

- CTC can use thermal (F_Q) and Nernst (F_N) limiters
	- Cannot reproduce kinetic results so far
	- Use of thermal limiter alone makes results far worse!
- Simulations 13 of T_e profile relaxation in 1D (without hydro or laser) indicate similar

¹³ Brodrick *et al.* - 47th Annual Anomalous Absorption Conference (2017)

14 / 15

Choice of F_0 and F_N is important

- CTC can use thermal (F_Q) and Nernst (F_N) limiters
	- Cannot reproduce kinetic results so far
	- Use of thermal limiter alone makes results far worse!
- Simulations 13 of T_e profile relaxation in 1D (without hydro or laser) indicate similar
- May require non-local model ultimately

¹³ Brodrick *et al.* - 47th Annual Anomalous Absorption Conference (2017)

14 / 15

• MHD simulations of beam propagation under magnetised conditions relevant to HED plasma experiments indicate changes in beam focusing ...

- MHD simulations of beam propagation under magnetised conditions relevant to HED plasma experiments indicate changes in beam focusing ...
- but kinetic simulations do not agree (for these parameters), due to non-locality and IB heating effects.

- MHD simulations of beam propagation under magnetised conditions relevant to HED plasma experiments indicate changes in beam focusing ...
- but kinetic simulations do not agree (for these parameters), due to non-locality and IB heating effects.
- Reproducing VFP results using a fluid code under these conditions requires careful choice of thermal and magnetic flux limiters

15 / 15