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Talk Outline

* Motivation: B-fields in HED plasmas

* Magnetised e transport physics

e Results from cTC and IMPACT simulations
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Motivation: B-field applied to DD-ICF

* 30% increase in neutron yield with 8 kT field ?
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1 Chang et al., Phys. Rev. Lett. 107 (2011)
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* 30% increase in neutron yield with 8 kT field ?
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* Flux-limited Nernst advection required to
match simulations to experiment 2

1 Chang et al., Phys. Rev. Lett. 107 (2011)

2 Davies et al., Phys. Plas. 22 (2015)
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Motivation: B-field applied to hohlraums

* Improved laser-plasma coupling in hohlraum
targets with applied 7.5 T B-field 3

3 Montgomery et al., Phys. of Plasmas 22 (2015)
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Motivation: B-field applied to hohlraums

* Improved laser-plasma coupling in hohlraum
targets with applied 7.5 T
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* Potential for B-field aided ignition of targets *

3 Montgomery et al., Phys. of Plasmas 22 (2015)
4 Perkins et al., Phys. of Plasmas 20 (2013)
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Motivation: B-field applied to hohlraums

* Improved laser-plasma coupling in hohlraum
targets with applied 7.5 T B-field 3
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* Potential for B-field aided ignition of targets *
* But Nernst advection can reduce hohlraum T, °

3 Montgomery et al., Phys. of Plasmas 22 (2015)
4 Perkins et al., Phys. of Plasmas 20 (2013)
> Farmer et al., Phys. of Plasmas 24 (2017)
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Will magnetised transport atfect laser
focusing?
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Will magnetised transport atfect laser

focusing?
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Magnetised transport processes

e Heat-flow
e T€ .Te
q = felB K¢ VT, —B°-j—
Me = e
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Magnetised transport processes

e Heat-flow
e T€ .Te
q = felB K¢ VT, —B°-j—
Me = e

e Ohm’s law

ene (BE+CxB)=-VP, +jxB+ —%a°j—n.p° VT,

eT

® Epperlein & Haines, J. Phys. D 17 (1984)
/ Braginskii., Rev. Plas. Phys. 1 (1965)
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Magnetised transport processes

e Heat-flow
e T€ .Te
q = felB K¢ VT, —B°-j—
Me = e

e Ohm’s law

ene (E +[C X B)J: —VP.+jxBH megc + Ezeﬁc : VTGJ

eT

frozen-in flow Nernst advection

® Epperlein & Haines, J. Phys. D 17 (1984)
/ Braginskii., Rev. Plas. Phys. 1 (1965)
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Magnetised transport processes

e Heat-flow
e T€ .Te
q = felB K¢ VT, —B°-j—
Me = e

e Ohm’s law

m

eNe (E%{C X B)J: —VP, +jxBH

eT

ch j Eneﬁc . vTe}

frozen-in flow Nernst advection
e Nernst advection - B-fields advect with heat-flow

9B 8,
oV (e\B\

VT€><B> =V x (v, X B)

® Epperlein & Haines, J. Phys. D 17 (1984)
/ Braginskii., Rev. Plas. Phys. 1 (1965)
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B-fields affect non-locality
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B-fields affect non-locality

* Non-local transport is inhibited using an applied
B-field 8 ...

8 Froula et al., Phys. Rev. Lett. 98 (2007)
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B-fields affect non-locality

* Non-local transport is inhibited using an applied
B-field 8 ...
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8 Froula et al., Phys. Rev. Lett. 98 (2007)
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B-fields affect non-locality

* Non-local transport is inhibited using an applied
B-field € ... but can re-emerge due to Nernst °

B=0T = = = -B=4T(Frozen-in flow) B=4T (+ Nernst)
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8 Froula et al., Phys. Rev. Lett. 98 (2007)
J Ridgers et al., Phys. Rev. Lett. 100 (2008)
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Simulations — CTC and IMPACT
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Simulations — CTC and IMPACT

* CTC - 2D MHD code w/ Braginksii transport 1°
* IMPACT - 2D VFP code inc. magnetic fields %

10 Bissell et al., Phys. of Plasmas. 19 (2012)
11 Kingham & Bell, J. Comp. Phys. 194 (2004)
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Simulations — CTC and IMPACT

* CTC - 2D MHD code w/ Braginksii transport 1°
* IMPACT - 2D VFP code inc. magnetic fields %

* Both codes augmented with paraxial laser routine

LASER

10 Bissell et al., Phys. of Plasmas. 19 (2012)
11 Kingham & Bell, J. Comp. Phys. 194 (2004)
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Simulations — CTC and IMPACT

* CTC - 2D MHD code w/ Braginksii transport 1°
* IMPACT - 2D VFP code inc. magnetic fields %

* Both codes augmented with paraxial laser routine

Neo (0.75:, 1.5, 7.8) % 10 om™
Teo 20eV
LASER Z 2 (He), 7(N)
<A » B, 0,367
Ss Iy 3.9 x 10 Wem ™
7 B 1.054 um
& 10.0 yim

10 Bissell et al., Phys. of Plasmas. 19 (2012)
11 Kingham & Bell, J. Comp. Phys. 194 (2004)
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MHD simulations: beam disruption
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MHD simulations: beam disruption

* Change to beam focusing with / without Nernst
after 350 ps of simulation
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MHD simulations: beam disruption

* Change to beam focusing with / without Nernst
after 350 ps of simulation
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MHD simulations: beam disruption

* Lineouts 1 mm into domain at t = 350 ps
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MHD simulations: beam disruption

* Lineouts 1 mm into domain at t = 350 ps
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MHD simulations: beam disruption

* Lineouts 1 mm into domain at t = 350 ps

B-field (normalised) Temperature (eV)
300
2t Nernst on |
7~
1.5¢ 200 |
| -
[ 100 ¢
O 5 Nernst
' off
0 100 200 0 100 200
X (microns) X (microns)

9/15 Martin Read | 5t LaB Workshop | Russia | 22" — 28th july 2017



MHD simulations: beam disruption

* Lineouts 1 mm into domain at t = 350 ps
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Channel disruption in CTC is consistent

10/ 15
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VFP simulations - no beam disruption
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VFP simulations - no beam disruption
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VFP simulations - no beam disruption
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Why are the VFP results different?
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Why are the VFP results different?

* Non-local transport:

* Pre-heating
* No flux-limiters were used initially in cTC
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Why are the VFP results different?

* Non-local transport:

* Pre-heating
* No flux-limiters were used initially in cTC

* |B absorption preferentially heats slower e~

- o\
foocexp—(—> 2<m <5
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Why are the VFP results different?

* Non-local transport:

* Pre-heating
* No flux-limiters were used initially in cTC

* |B absorption preferentially heats slower e~

- o\
foocexp—<—> 2<m <5
L vT i

e Super-Gaussian transport can reduce Nernst
advection by 5x under similar conditions 12

12 Bissell et al., New J. Phys. 15 (2013)
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EDF (f,) is non-Maxwellian
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EDF (f,) is non-Maxwellian
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EDF (f,) is non-Maxwellian
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EDF (f,) is non-Maxwellian
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Choice of Fj, and F is important
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Choice of F, and Fy is important

* CTC can use thermal (F,) and Nernst (Fy) limiters

* Cannot reproduce kinetic results so far
e Use of thermal limiter alone makes results far worse!
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e Use of thermal limiter alone makes results far worse!
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Summary

* MHD simulations of beam propagation under
magnetised conditions relevant to HED plasma
experiments indicate changes in beam focusing ...
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Summary

* MHD simulations of beam propagation under
magnetised conditions relevant to HED plasma
experiments indicate changes in beam focusing ...

* but kinetic simulations do not agree (for these

parameters), due to non-locality and IB heating
effects.
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Summary

* MHD simulations of beam propagation under
magnetised conditions relevant to HED plasma
experiments indicate changes in beam focusing ...

* but kinetic simulations do not agree (for these
parameters), due to non-locality and IB heating
effects.

* Reproducing VFP results using a fluid code under
these conditions requires careful choice of

thermal and magnetic flux limiters
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