Kinetic solution for the generation of magnetic fields via the Biermann battery

Kevin Schoeffler^I

Nuno Loureiro², Luis Silva¹, Ricardo Fonseca^{1,3}

¹ GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

² Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge MA 02139, USA

³ Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

récnico

Funded by the European Unior

Simulation results obtained at the Accelerates cluster (IST), SuperMUC (Garching)

ανισιΔ

Supported by the Seventh Framework Programme of the European Union

Magnetic fields ubiquitous in astrophysics

Crab Nebula

(NASA/HST/CXC/ASU/J. Hester et al.)

Cluster Merger

(Chandra x-ray observations)

Astrophysical magnetic field origin? Biermann battery seed? Collisionless environment

(Kulsrud 2008, 1992)

What is the Biermann battery?

Initial state	Ingredients	Results
Plasma No magnetic fields	Density gradient: ∇n Temperature gradient: ∇T Perpendicular gradients: $\nabla n \times \nabla T \neq 0$	Magnetic field generated at gradient scale initially growing as $\frac{eB}{mc\omega_{pe}} = \lambda_D^2 \frac{\nabla n \times \nabla T}{nT} \omega_{pe} t$

The Biermann Battery

How strong are the expected fields

Prediction of saturation

OSIRIS 3.0

OSITIS 3.0

Ricardo Fonseca:

ricardo.fonseca@tecnico.ulisboa.pt **/** Frank Tsung: tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

osiris framework

Massivelly Parallel, Fully Relativistic
Particle-in-Cell (PIC) Code
Visualization and Data Analysis
Infrastructure
Developed by the osiris.consortium
⇒ UCLA + IST

code features

Scalability to ~ 1.6 M cores SIMD hardware optimized Parallel I/O Dynamic Load Balancing QED module Particle merging GPGPU support Xeon Phi support

Kinetic effects in collisionless systems

Scaling with system size

(Schoeffler et al. 2014, Schoeffler et al. 2016)

B follows I/L scaling (Haines 1997) (Biermann regime)

then remains finite at large L (Weibel regime)

Biermann

Weibel

Can a kinetic solution be found?

Maxwell-Vlasov equations

$$\frac{\partial f}{\partial t} = -\mathbf{v} \cdot \nabla f + \frac{e}{m_e} \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \nabla_v f$$
$$\frac{\partial \mathbf{E}}{\partial t} = c \nabla \times \mathbf{B} + 4\pi e \int dv^3 \mathbf{v} f$$
$$\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E}$$

Maxwell Distribution

$$f(t=0) = f_M(v_x, v_y, v_z)$$

Perturbed by gradients:

$$n = n_0 \left(1 + \epsilon \frac{x}{\lambda_D} \right)$$
$$T = T_0 \left(1 + \frac{\delta y}{\lambda_D} \right)$$

Small parameters

$$\epsilon = \frac{\lambda_D \nabla n}{n_0}$$

We found a kinetic solution!

(Schoeffler et al. 2017 arXiv 1707.06069)

Linear Biermann growth

Kevin Schoeffler | NWP (LaB workshop), Russia | July 26, 2017

Temperature Anisotropy

A temperature "tensor"

$$T_{ij} = \frac{m_e}{n} \int dv^3 v_i v_j f$$
Temperature Tensor

$$T_{ij} = T_0 + T_0 \begin{vmatrix} \delta^2 & \epsilon \delta \\ \epsilon \delta & 3\delta^2 \end{vmatrix} (t\omega_{pe})^2 / 2$$
Rotated Temperature Tensor

$$T_{ij} = T_0 + T_0 \begin{vmatrix} 2\delta^2 - A_0 & 0 \\ 0 & 2\delta^2 + A_0 \end{vmatrix} (t\omega_{pe})^2 / 2$$
If you rotate clockwise by

$$\theta = \frac{1}{2} \tan^{-1} \frac{\epsilon}{\delta}$$
The matrix is diagonalized

 $A = A_0(t\omega_{pe})^2$

 $A_0 = \frac{\delta}{\delta^2} + \frac{\epsilon^2}{\epsilon^2})^{1/2}$

Most general perturbation

$$n = n_0 \left(1 + \epsilon_{\parallel} \frac{x'}{\lambda_D} + \epsilon_{\perp} \frac{y'}{\lambda_D} + \epsilon^2 \kappa_{nij} \frac{x_i x_j}{\lambda_D} \right)$$

$$T = T_0 \left(1 + \frac{\delta x'}{\lambda_D} + \frac{\delta^2 \kappa_{Tij}}{\lambda_D} \frac{x_i x_j}{\lambda_D} \right)$$

Arbitrary gradient angle

∇n • **∇**T≠0

2nd order gradients

2nd order terms in δ and ϵ , proportional to κ_{Tij} and κ_{nij}

(Schoeffler et al. 2017 arXiv 1707.06390)

K_{Tij} affecting the temperature anisotropy

$$T = T_0 \left(1 + \frac{\delta x'}{\lambda_D} + \frac{\delta^2 \kappa_{Tij}}{\lambda_D} \frac{x_i x_j}{\lambda_D} \right)$$

$$\kappa_{Tij} = \begin{vmatrix} \kappa_{\parallel} & \kappa_{X} \\ \kappa_{X} & \kappa_{\bot} \end{vmatrix}$$

New vector affects anisotropy

$$\Delta_{\kappa} = \begin{vmatrix} \Delta_{\kappa \parallel} \\ \Delta_{\kappa \perp} \end{vmatrix} = \begin{vmatrix} \kappa_{\parallel} - \kappa_{\perp} \\ 2\kappa_{\times} \end{vmatrix}$$

$A = \delta |\delta + \varepsilon + \delta \Delta_{\kappa}|$

As a function of space

$A = \delta |\delta + \varepsilon + \delta \Delta_{\kappa}|$

0

x/d_e

-40

-20

Kevin Schoeffler | NWP (LaB workshop), Russia | July 26, 2017

40

20

0.00

We can predict anisotropy vs. space!

 $\theta(x,y)$ and A(x,y)can be found using $\epsilon_{\perp}(x,y), \epsilon_{\parallel}(x,y),$ $\delta(x,y),$ $K_{xx}(x,y), K_{xy}(x,y),$ and $K_{yy}(x,y)$

Does the anisotropy match simulations?

Simulated anisotropy

Does the anisotropy match simulations?

Looking closer

Theoretical/Simulated Anisotropy

Weibel onset matches anisotropy growth

We can predict Biermann battery vs. space!

Kevin Schoeffler | NWP (LaB workshop), Russia | July 26, 2017

TÉCNICO LISBOA

ſſ

Predicted kinetic Biermann field

Even relevant in magnetized space systems

In essentially ID flux tubes where

We predict an anisotropy

 $\nabla T \parallel \mathbf{B}_0 \parallel \nabla n \parallel \Delta_{\kappa}$

 $A = A_0(t\omega_{pe})^2$

$$A_0 = \delta | \delta + \varepsilon_{||} + \delta \Delta_{\kappa ||} |$$

In the magnetopause

On the solar surface

We found an analytic solution for arbitrary temperature and density gradients

showing kinetic Biermann growth and temperature (Schoeffler et al. 2017 anisotropy growth solved for general T and n distributions arXiv 1707.06069 and 1707.06390)

confirming the growth of the Biermann battery for collisionless systems (as a function of space)

linear growth proportional to $\nabla n \times \nabla T$

revealing anisotropy generation magnitude and direction (as a function of space)

 t^2 growth caused by ∇T (found for a general T and n distributions)

with results applicable to

astrophysical magnetic field growth, and effects on heat flux laser experiments where collisions are weak

Relativistic laser simulations: N. Shukla

We found a kinetic solution!

Evolution of f

$$f = f_{\nabla T} + \frac{1}{2} \epsilon \delta \omega_{pe} t \frac{x}{\lambda_D} \bar{v_y} \left(5 - \bar{v}^2\right) f_M + \frac{1}{2} \epsilon \delta \left(\omega_{pe} t\right)^2 \bar{v_x} \bar{v_y} f_M f_{\nabla T} \equiv f_0 + \frac{1}{2} \delta \omega_{pe} t \bar{v_y} \left(5 - \bar{v}^2\right) f_M - \frac{1}{4} \delta^2 \omega_{pe} t \frac{y}{\lambda_D} \bar{v_y} \left(25 - 12\bar{v}^2 + \bar{v}^4\right) f_M + \delta^2 \left(\omega_{pe} t\right)^2 \left[\frac{1}{8} \bar{v_y}^2 \left(39 - 14\bar{v}^2 + \bar{v}^4\right) - \frac{1}{4} \left(5 - \bar{v}^2\right)\right] f_M$$

E from Maxwell-Bolzmann potentialEvolution of B $\frac{\mathbf{E}}{E_0} = -\left(\epsilon - \epsilon^2 \frac{x}{\lambda_D} + \epsilon \delta \frac{y}{\lambda_D}\right) \hat{\mathbf{x}} - \delta \hat{\mathbf{y}}$ $\frac{\mathbf{B}}{B_0} = -\epsilon \delta \omega_{pe} t \hat{\mathbf{z}}$ $\bar{\mathbf{v}} \equiv \frac{\mathbf{v}}{v_{T0}}$ (Schoeffler et al. 2017 arXiv 1707.06069) $\bar{\mathbf{v}} \equiv \frac{\mathbf{v}}{v_{T0}}$ $E_0 \equiv m_e v_{T0} \omega_{pe}/e$ $B_0 \equiv m_e c \omega_{pe}/e$ Kevin Schoeffler [NWP (LaB workshop), Russia] July 26, 2017

What is a temperature anisotropy?

$$f = f\left(v_x, v_y, v_z, x, y, z, t\right)$$

$$T_{xx} = \frac{m_e}{n} \int dv^3 v_x^2 f$$

Maxwell distribution

$$f_M = n_0 \left(\frac{1}{2\pi v_{the}^2}\right)^{3/2} \exp\left(-\frac{1}{2}\frac{v^2}{v_{the}^2}\right)$$

Anisotropic Temperature

Most general temperature tensor in 2D

Rotated Temperature Tensor

$$T_{ij} = T_0 + T_0 \begin{vmatrix} 2(\delta^2(1+\kappa_{\perp}+\kappa_{\parallel})+\epsilon_{\parallel}\delta) + A_0 & 0\\ 0 & 2(\delta^2(1+\kappa_{\perp}+\kappa_{\parallel})+\epsilon_{\parallel}\delta) - A_0 \end{vmatrix} (t\omega_{pe})^2/2$$

T_{ij} independent of K_{nij}

Rotated Anisotropy

 $A = A_0(t\omega_{pe})^2$

$$A_{0} = \delta(\delta^{2} + \epsilon^{2} + \delta^{2} \Delta_{\kappa}^{2} + 2(\delta\epsilon_{\parallel} + \epsilon_{\parallel} \delta\Delta_{\kappa\parallel} + \epsilon_{\perp} \delta\Delta_{\kappa\perp} + \delta^{2} \Delta_{\kappa\parallel}))^{1/2}$$
$$= \delta[\delta + \epsilon + \delta\Delta_{\kappa}]$$

rotated towards
$$\nabla n$$
 by
 $\theta = \frac{1}{2} \tan^{-1} \frac{\epsilon_{\perp} + \delta \Delta_{\kappa \perp}}{\delta + \delta \Delta_{\kappa \parallel} + \epsilon_{\parallel}}$

Maybe already seen in experiments

Predicted kinetic Biermann field

$$\frac{eB}{m_e c \omega_{pe}} = \epsilon_\perp \delta \omega_{pe} t$$

Equal to fluid predictions

Equations also valid for anisotropic bi-Maxwellian distributions

$$T_{\parallel} \neq T_{\perp}$$

 T_{\parallel} parallel to ∇n

