

A. Soloviev¹, K. Burdonov¹, S. N. Chen^{1,2}, A. Eremeev¹, G. Revet², S. Pikuz³, E. Filippov³, M. Cerchez⁴, T. Gangly², A. Sladkov¹, A. Korzhimanov¹, V. Ginzburg¹, E. Khazanov¹, A. Kochetkov¹, A. Kuzmin¹, I. Shaykin¹, A. Shaykin¹, I. Yakovlev¹, <u>M. Starodubtsev¹</u>, and J. Fuchs^{1,2} ¹Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod, Russia ²LULI, CNRS UMLR7605, Ecole Polytechnique, Palaiseau, France ³Joint Institute for High Temperatures, Russian Academy of Science, Moscow, Russia ⁴HHU, Dusseldorf, Germany

Laboratory investigation of laser plasma expansion across the ambient magnetic field

Starodubtsev M. NWP-2017

Collaborators

Соловьев А.А.¹ Бурдонов К.Ф.¹ Сладков А.Д.¹ Коржиманов А.В.¹ Гинзбург В.Н.¹ Хазанов Е.А.¹ Кочетков А.А.¹ Кузьмин А.А.¹, Шайкин И.А.¹ Шайкин А.А.¹ Яковлев И.В.¹

S. N. Chen^{1,2} G. Revet² J. Fuchs^{1,2}

Пикуз С.А.³ Скобелев И.Ю.³ Рязянцев С.Н.³ Алхимова М.А.³ Филиппов Е.Д.³ Пикуз Т.А.³

A. Chiardi⁴ B. Khiar⁴

Sub-PW OPCPA PEARL laser facility

Laser-plasma interaction: applications

- Laser driven acceleration
 - Particles acceleration
 - X-ray generation.
- * Applications
 - Radiotherapy
 - Bio-imaging
- HED physics

LabAstro

* ICF

Modeling of magneto-hydrodynamic plasma phenomena

Initial laser-plasma conditions

Initial laser-plasma conditions

Ne = 3e18 cm-3, Z = 6.3, Te = 200 eV, Ti = 200 eV, B0 = 13.5 T, V = 600 km/s, L = 0.4 cm

'v_s(km/s) = ' [104.2111]				
'v_A(km/s) = ' [104.4661]				
'lambda_e(um) = ' [43.3147]				
'lambda_i(um) = ' [1.4920]				
'rho_e(um) = ' [2.4975]				
'rho_i(um) = ' [69.1992]				
'M(Mach) = ' [5.7575]				
'M_A(Afven Mach) = ' [5.7435]				
'beta(p_th/p_b) = ' [1.5259]				
'beta_dy(p_dynamic/p_b) = ' [65.5693]				
'Pe_heat (Peclet) = ' [4.3136]				
'Re (Reynolds) = ' [1.7794e+005]				
'ReM (magnetic Reynolds) = ' [2.2529e+003]				
'Hall_e = ' [17.3433]				
'Hall_i = ' [0.0216]				
'Pr (Prandtl) = ' [0.0379]				
'p_b(magn. press., MPa) = ' [72.9000]				
'p_th(kin. press., MPa) = ' [111.2381]				
'p_dy(ram press., MPa) = ' [3.6875e+003]				
'c/omega_pi(um) = ' [545.7387]				

Space plasma processes

Space plasma processes

Modeling of magneto-hydrodynamic plasma phenomena

Adapted from Camenzind, (1990).

Space plasma processes

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

Adapted from Camenzind, (1990).

Modeling of MHD processes: scaling

LAPD (UCLA)

Modeling of MHD processes: experiment

Modeling of MHD processes: experiment

Modeling of magneto-hydrodynamic plasma phenomena

* Modeling of magneto-hydrodynamic plasma phenomena

Modeling of magneto-hydrodynamic plasma phenomena: jet formation

Laser-plasma plume propagating along the ambient magnetic field

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field B. Albertazzi *et al. Science* **346**, 325 (2014);

DOI: 10.1126/science.1259694

Full-scale astrophysical simulation

<u>Simulations performed by A. Ciardi (code RAMSES)</u>						
Objet	cas 1	cas 2	cas 3			
Champ magnétique (mG)	5	20	10			
Taux de masse éjecté ($\mathbf{M}_{\text{solair e}}/an$)	10-8	5.10-7	10-7			
T _{ambiant} (K)	100	500	100			
T _{vent} (K)	10000	500	10000			
ρ _{vent} (part.cm ⁻³)	10^{5}	10^{7}	10 ⁶			
ρ _{ambiant} (part.cm ⁻³)	4.10 ³	4.10 ⁵	4.104			
${ m R}_{ m éjection}\left({ m U.A} ight)$	8	10	10			
vitesse d'éjection (km.s ⁻¹)	200	70	130			
Perturbation en vitesse (%)	5	10	5			

Laser / astrophysical plasma scaling

20

Quantity	Laser-plasma	YSO	
	10^{13}W/cm^2		$P_e > 1$: close to 1, thermal condu
B ₀	20 T	~1e-3 G	/ plays a minor role
Peclet	3.5	1.0e11	$R_{e} >>1$: viscosity negligeable
Reynolds	1.0e4-1.0e5	1.0e13	
Magnetic Reynolds	50-5000	1.0e15	\rightarrow R _{em} >1: magnetic field lines froz
Mach (v _{jet} /c _s)	1-50	10-50	in the outflow supersonic
	>>1 near	Same,	WI-1. Outriow supersonic
$\beta = p_{plasma}/p_{magnetic}$	source	<<1 from	β : plasma varies from kinetic to
	<<1 away	~10s AU	magnetically dominated
♦ Time: 20 ns \rightarrow 6 years			
Space: 1 mm → 300 AU	U, or 4.5 10 ¹³ m		Both are ideal MHD plasmas

♦Magnetic field: 20 T → 1 μ T

D. D. Ryutov et al., The Astrophysical J. Suppl. 127, 465 (2000)

thermal conduction

Laser / astrophysical plasma scaling

Quantity	Laser-plasma	YSO	
	10^{13}W/cm^2		P > 1 close to 1 thermal conduction
B ₀	20 T	~1e-3 G	$\frac{1}{ } = \frac{ }{ } = \frac{ }$
Peclet	3.5	1.0e11	
Reynolds	1.0e4-1.0e5	1.0e13	$\begin{array}{c c} \hline \hline \\ $
Magnetic Reynolds	50-5000	1.0e15	$\begin{array}{c} \underbrace{}\\ \phantom{a$
Mach (v _{jet} /c _s)	1-50	10-50	
$\beta = p_{plasma}/p_{magnetic}$	>>1 near source <<1 away	Same, <<1 from ~10s AU	Scale len No. 10-3
✤ Time: 20 ns →	6 years		
◆Space: 1 mm → 300 AU, or 4.5 10 ¹³ m			10 ¹ 10 ² 10 ³ 1 Temperature, T(eV)
♦ Magnetic field: 20 T \rightarrow 1 μ T			
		21	B. Remington et al., Rev. Mod. Phys. 78 , 755 (2006)

Modeling of magneto-hydrodynamic plasma phenomena

Modeling of magneto-hydrodynamic plasma phenomena

 Modeling of magneto-hydrodynamic plasma phenomena: accretion disc edge dynamics

Laser-plasma plume propagating across the ambient magnetic field

expect:

plasma expansion across **B**₀ is limited by magnetic pressure

further plasma expansion is along \mathbf{B}_0

Andrea Ciardi (2016)

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

16ns,

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

26ns,

* Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

Modeling of mag

Laser plasma expansion across **B**₀ : experiment

lasma phenomena: accretion disc

76ns

34

Ne = 1e18 cm-3, Z = 6.3, Te = 30 eV, Ti = 30 eV, B0 = 13.5 T, V = 600 km/s, L = 0.1 cm

Laser pla

'v_s(km/s) = ' [40.3608]				
'v_A(km/s) = ' [180.9407]				
'lambda_e(um) = ' [4.2320]				
'lambda_i(um) = ' [0.1458]				
'lambda_p(c/f_p, um) = ' [33.9292]				
'rho_e(um) = ' [0.9673]				
'rho_i(um) = ' [26.8007]				
'M(Mach) = ' [14.8659]				
'M_A(Afven Mach) = ' [3.3160]				
'beta(p_th/p_b) = ' [0.0763]				
'beta_dy(p_dynamic/p_b) = ' [21.8564]				
'Pe_heat (Peclet) = ' [22.7988]				
'Re (Reynolds) = ' [9.4045e+005]				
'ReM (magnetic Reynolds) = ' [37.8895]				
'Hall_e = ' [4.3752]				
'Hall_i = ' [0.0054]				
'Pr (Prandtl) = ' [1.2057e-004]				
'p_b(magn. press., MPa) = ' [72.9000]				
'p_th(kin. press., MPa) = ' [5.5619]				
'p_dy(ram press., MPa) = ' [1.2292e+003]				
'c/omega pi(um) = ' [945.2472]				

riment

Laser plasma expansion across **B**₀: simulations

Main dynamics: RT instability?

Side oscillations: KH instability?

Where are the accretion columns ? Are the astrophysical accretion models correct ? X

Andrea Ciardi (2016)

Laser plasma expansion across **B**_o: modeling of accretion disc

Adapted from Camenzind, (1990).

Summary

Kulkarni and Romanova MNRAS. 386, 673–687 (2008)

- * Small-scale RT instability at the edge of an accretion disc
- * The source of the turbulence in accretion discs (α -models)
- Structure of plasma flows in the vicinity of different astrophysical objects (hot Jupiters etc.)