High-Energy-Density Physics Experiments: Creating astrophysically relevant conditions in the laboratory

Carolyn Kuranz University of Michigan

Collaborators and Funding

University of Michigan: R.P. Young, R. P. Drake, S. Klein, G. Fiksel, A. Rasmus, J. Levesque, S. Klein General Atomics, M. Manuel Laboratory for Laser Energetics: D. Froula, P.-Y. Chang, D. Burnak Livermore National Laboratory: J. S. Ross Massachusetts Institute of Technology: C.K. Li, H. Sio Los Alamos National Laboratory: A. Zylstra Rice University: P. Hartigan, A. Liao AWE: J. Foster, P. Grahm

Funding Statement: This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, and by the National Laser User Facility Program, grant number DE-NA0002032.

Summary

- What is the high-energy-density physics (HED) regime?
- Relevant astrophysical systems
- High-energy-density magnetized plasmas and important dimensionless numbers
- Scaling a lab experiment to an astrophysical phenomenon

What is High-Energy-Density Physics (HEDP)?

Systems with a pressure of over 1 million atmospheres (10^6 atm = 1 Mbar = 0.1 TPa)

- Materials become ionized under pressure
- Materials are generally dense plasmas
- Causes temperatures of 100 million Kelvin

From Frontiers in High Energy Density Physics: The X-games of Contemporary Science

Where do we create HEDP conditions?

Lasers

- Omega (University of Rochester)
- ORION (UK)
- Hercules (University of Michigan)
- NIF (Lawrence Livermore National Lab)
- Gekko (Japan)
- SGII (China)

Pulse power (Z-pinches)

- Z machine (Sandia National Lab)
- Maize (Michigan)
- MAGPIE (Imperial College)
- COBRA (Cornell)

HED experiments can uniquely address dynamics that matter for astrophysics

- High Mach number
- Low viscosity
- Dynamically important magnetic pressure
- Magnetic fields are advected with the flow
- The dynamic systems can be scaled in terms of the physically important dimensionless parameters

Key Dimensionless Parameters: Plasma β

Ratio of ram pressure to magnetic pressure

$$\beta \sim \frac{\rho U^2}{B^2}$$

- U velocity scale (m/s)
- ρ mass density (kg/m³)
- B magnetic field strength (gauss)

Many astrophysical systems have $\beta \simeq 1$

Key Dimensionless Parameters: Reynolds number

Ratio of inertial forces to viscous forces

- U velocity scale (m/s)
- L length scale (m)
- v kinematic viscosity (m²/s)

What happens at high Re?

- Systems can become turbulent
- Turbulent systems have fluctuations on a wide range scales
- Energy is transferred from large scale vortices
 *I*₀ to the viscous dissipation scale
 I_v ~ *Re*^{-3/4*}*I*₀

Dimotakis P E 2000 The mixing transition in turbulent flows J. Fluid Mech. 409 69

Re	10 ³	10 ⁵
I _o	1 m	100 µm
I _v	5 mm	.01 um

Key Dimensionless Parameters: Magnetic Reynolds number

Ratio of inertial forces to magnetic diffusivity

 $\operatorname{Re}_{m} = \frac{UL}{\eta}$

- U velocity scale (m/s)
- L length scale (m)
- η magnetic diffusivity (m²/s)

What happens at high Re_m?

- The magnetic field is advected with the fluid flow
- The field lines become "frozen in" to the plasma and are carried with the flow
- Dissipation scale for magnetic fields *I_η~Re_m^{-1/2}Re^{-1/4}I₀*

Fig. 1.—Sketch of scale ranges and energy spectra in a large- Pr_m medium.

A. A. Schekochihin, Astrophysical Journal, 2004

High *Re* and *Re_m* flows are complex

- There exists an interplay of the velocity and magnetic field vectors and the dissipative parameters, viscosity, and resistivity
- Sufficient theory does not exist in this regime
- Computational simulations require significant resources and all scales cannot be resolved and are limited in *Re* and *Re_m* due to numerical diffusivity
- Experiments can help advance the understand of these systems

Where can high *Re* and *Re_m* flows be found in nature?

Stars and during star formation, galaxies and galactic evolution, accretion disks, planet formation, magnetosphere and more

Structure of the Earth's magnetosphere

Examples of *Re* and *Re_m* for some astrophysical systems

	Re	Re _m
Intergalactic medium	1013	1027
Magnetized jets	1014	10 ¹⁹
Galaxy cluster	10 ²⁵	10 ²⁵
Solar dynamo	1011	10 ⁸
Accretion disks	10 ⁹	10 ⁸

What is the scale, structure, and evolution of these systems and how is it affected by the magnetic field?

Well-scaled lab experiments can help answer these questions.

Accreting material funnels along magnetic field lines and forms a shock at the T Tauri star's surface

Surface of T Tauri star

How does a magnetic field affect the structure of the accretion shock and accreting stream of a T Tauri star?

Understanding accretion shock structure is necessary to determine mass accretion rates

Observationally, these look the same

Understanding accretion shock structure is necessary to determine mass accretion rates

Observationally, these look the same

How can we use laboratory experiments to explore this phenomenon?

Parameters for accreting star from astrophysical observations and theory

Parameter	Unit	Accreting
		Star
Mass density, ρ	$ m gcm^{-3}$	2×10^{-11}
Average atomic number	-	1.1
Average mass number	-	1.3
Average ionization	-	0.7
Electron density, n_e	cm^{-3}	$7 imes 10^{12}$
Electron temperature, T_e	eV	1
Velocity, u	${\rm kms^{-1}}$	450
Magnetic field strength, B	G	1000
Post-shock temperature, T_s	eV	300
Length scale, L	cm	10^{9}
Ion collisional MFP, $\lambda_{\rm MFP,i}$	\mathbf{cm}	$2 imes 10^6$
Magnetic diffusion length, ℓ_M	\mathbf{cm}	200

Dimensionless numbers connect the accreting star and the experiment

Parameter	Unit	Accreting Star
Mach number, \mathcal{M}	-	30
Collisionality, $\lambda_{\rm MFP,i}/L$ Magnetic diffusion length ratio $\lambda_{\rm M}/L$	-	0.002 2 × 10 ⁻⁷
Ram Plasma Beta, β_{ram}	-	2×10 1.0
Reynolds number, Re	-	10^{10}

To create a similar system in the lab require a supersonic, collisional (shock forms) system, with an advected magnetic field, where the magnetic pressure is equal to the ram pressure and there is low viscosity

We can define a experimental space where these requirements are met

Young, Kuranz, Drake, Hartigan, High Energy Density Physics, 2017

These constraints define the plasma and field 50 100 150 200 250 300 requirements for a well-scaled experiment

-6

50 300

$$\rho = 10^{-5} \text{ g/cm}^{3}$$

u = 100 km/s
T_e = 10 eV
B = 10 T

Young, Kuranz, Drake, Hartigan, High Energy Density Physics, 2017

We can create these conditions at the Omega laser with a seeded magnetic field

60 laser beams UV light 30 kJ of energy

MIFEDs coil provide magnetic field strength and configuration

Omega target chamber

We irradiated the rear surface of a CH target with 3.5 kJ of UV laser energy in a 1 ns pulse

Optical image of jet

Not to scale

We used UV Thomson scattering to characterize the plasma

Compared to the optimal experiment, the actual experiment has a higher β_{ram}

Parameter	Unit	Accreting	10-eV Scoped	Actual
		Star	Experiment	Experiment
Mass density, ρ	$ m gcm^{-3}$	2×10^{-11}	10^{-5}	$3 imes 10^{-5}$
Average atomic number	-	1.1	6.5	6.5
Average mass number	-	1.3	3.5	3.5
Average ionization	-	0.7	2.4	0.5
Electron density, n_e	${ m cm^{-3}}$	$7 imes 10^{12}$	$2 imes 10^{18}$	$1.4 imes 10^{16}$
Electron temperature, T_e	eV	1	10	1.6
Velocity, u	${ m kms^{-1}}$	450	100	80
Magnetic field strength, B	G	1000	10^{5}	$7 imes 10^4$
Post-shock temperature, T_s	eV	300	40	20
Length scale, L	\mathbf{cm}	10^{9}	0.1	0.1
Ion collisional MFP, $\lambda_{\rm MFP,i}$	\mathbf{cm}	$2 imes 10^6$	0.02	0.14
Magnetic diffusion length, ℓ_M	\mathbf{cm}	200	0.03	0.04
Mach number, \mathcal{M}	-	30	4	10
Collisionality, $\lambda_{ m MFP,i}/L$	-	0.002	0.2	1.4
Magnetic diffusion length ratio, λ_M/L	-	2×10^{-7}	0.3	0.4
Ram Plasma Beta, $\beta_{\rm ram}$	-	1.0	2.5	10
Reynolds number, Re	-	10^{10}	$3 imes 10^4$	7×10^{4}

We are just nearly out of the desired parameter space

Analysis by Dr. Rachel Young

Large density and velocity indicate that the experiment could be scaled for a very short time

Analysis by Dr. Rachel Young

We need a slower, less dense, steadier flow

We need a slower, less dense, steadier flow

This setup is more relevant to bow shocks in the magnetosphere, which is in a similar regime, and a simpler experiment

The Earth's bow shock forms when the P_{ram} of the solar wind equals the P_{mag} of the Earth's magnetic field

An artist's rendition of the solar wind interacting with a magnetosphere. From nasa.gov.

Simulations aided in experimental planning

Simulated shock formation by Andy Liao (Rice)

Liao et al, High Energy Density Physics

Simulated proton radiograph by Joseph Levesque

The new schematic creates a lower density, steady flow

Spatially resolved Thomson scattering

Analysis by Joseph Levesque

Proton radiography images the shock formation

Proton radiography has aided in observing the shock location

Preliminary estimate of field compression is underway

Summary and Future Direction

- We study magnetized flows relevant to astrophysical systems
 - Accretion shocks
 - Magnetospheric dynamics
- Characterizing plasma is essential
- We recently developed a relatively steady, low pressure flow
- We are continuing to study shock formation in magnetized high-energy-density flows